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New Classes of Exact Causal Viscous Cosmologies
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Two particular exact solutions of the gravitational field equations for a
homogeneou s flat Friedmann±Robertson ±Walker universe filled with a causal
bulk viscous fluid in the framework of the full Israel±Stewart±Hiscock theory
are presented. The dynamics of the universe is entirely determined in the
present models by its thermal behavior. The solutions of the field equations are
expressed in an exact closed parametr ic form and correspond to an inflationary
transition between a singular state and a Minkowskian space-time and a quasi-
Minkowskian era and an inflationary state, connected by a noninflat ionary
phase, respectively. The inflationary era of the first solution is associated with
an increase in temperature and energy density (a heating period), but with a
decrease of the comoving entropy. The evolutionary period described by the
second solution leads during its noninflat ionary phase to a rapid decrease in
the temperature, the energy density, and the comoving entropy of the
correspond ing universe.

1. INTRODUCTION

Dissipative bulk viscous-type thermodynamic processes are supposed

to play a crucial role in the dynamics and evolution of the early universe.
Over 30 years ago Misner (1966) suggested that the observed large-scale

isotropy of the universe is due to the action of the neutrino viscosity which

was effective when the universe was about 1 sec old. There are many processes

capable of producing bulk viscous stresses in the early universe, like interac-

tion between matter and radiation, quark and gluon plasma viscosity, and

different components of dark matter (Chimento and Jakubi, 1996). Tradition-
ally, for the description of these phenomena the theories of Eckart (1940)

and Landau and Lifshitz (1987) were used. Because of the work of Israel

(1976), Israel and Stewart (1976), and Hiscock and Lindblom (1989), it has

become clear, however, that the Eckart-type theories suffer from serious
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drawbacks concerning causality and stability. Regardless of the choice of

equation of state, all equilibrium states in these theories are unstable and in

addition signals may be propagated through the fluid at velocities exceeding

the speed of light (Israel, 1976; Israel and Stewart, 1976; Hiscock and Lind-

blom, 1989). These problems arise due to the first-order nature of the theory,

i.e., it considers only first-order deviations from the equilibrium. The

neglected second-order terms are necessary to prevent noncausal and unsta-

ble behavior.

A relativistic second-order theory was found by Israel (1976) and devel-

oped by Israel and Stewart (1976) into what is called `transient’ or `extended’

irreversible thermodynamics. However, Hiscock and Lindblom (1989) and

Hiscock and Salmonson (1991) have shown that most versions of the causal

second-order theories omit certain divergence terms. The truncated causal

thermodynamics of bulk viscosity leads to pathological behavior in the late

universe (Hiscock and Salmonson, 1991), while the solutions of the full

causal theory are well behaved for all times. Therefore, the best currently

available theory for analyzing dissipative processes in the universe is the full

Israel±Stewart±Hiscock causal thermodynamics.

Due to the complicated nonlinear character of the evolution equations,

very few exact cosmological solutions of the gravitational field equations

are known in the framework of the full causal theory. Exact general solutions

of the field equations have been obtained recently by Chimento and Jakubi

(1997, 1998) for a homogeneous universe filled with a full causal viscous

fluid source obeying the relation j , r 1/2, corresponding to a bulk viscosity

coefficient j proportiona l to the Hubble factor H, and to two different choices

of the state equations for pressure, bulk viscosity coefficient, temperature,

and bulk relaxation time. Their solutions are expressed in an exact parametric

form as two-parameter families of solutions.

In the present paper we present some other new classes of exact solutions

of the gravitational field equations for a flat Friedmann±Robertson±Walker

universe filled with an imperfect fluid having bulk viscosity under the frame-

work of the full Israel±Stewart±Hiscock causal theory. They represent some

particular solutions of the evolution equation for H corresponding to some

fixed values of the constant physical parameters entering in the assumed

equations of state of the cosmological fluid. The dynamics of the universe

in these classes of models is entirely determined by its thermal behavior. The

behavior of the energy density, the temperature, the bulk viscosity coefficient,

the deceleration parameter, and the entropy is also analyzed.

The present paper is organized as follows. The field equations are written

down in Section 2. A general solution of the field equations is presented in

Section 3. In Section 4 we conclude and summarize our results.
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2. THERMODYNAMICS, FIELD EQUATIONS, AND
CONSEQUENCES

For a Robertson±Walker universe with a line element

ds2 5 dt2 2 a2(t) (dx2
1 1 dx2

2 1 dx2
3) (1)

filled with a bulk viscous cosmological fluid the energy-momentum tensor

is given by

T k
i 5 ( r 1 p 1 P ) ui u

k 2 ( p 1 P ) d k
i (2)

where r is the energy density, p is the thermodynamic pressure, P is the
bulk viscous pressure, and ui is the four-velocity satisfying the condition

ui u
i 5 1. We shall use units so that 8 p G 5 1 and c 5 1.

The gravitational field equations together with the continuity equation

T k
i;k 5 0 imply

3 H 2 5 r (3)

2HÇ 1 3H 2 5 2 p 2 P (4)

r Ç 1 3( r 1 p)H 5 2 3 P H (5)

The causal evolution equation for the bulk viscous pressure is given by

(Maartens, 1995)

t P Ç 1 P 5 2 3 j H 2
1

2
t P 1 3H 1

t Ç

t
2

j Ç

j
2

TÇ

T 2 (6)

where T is the temperature, j is the bulk viscosity coefficient, t is the

relaxation time, and we have denoted H 5 aÇ /a. Equation (6) arises as the

simplest way (linear in P ) to satisfy the H theorem [i.e., for the entropy

production to be nonnegative, Si
; i 5 P 2/ j T $ 0, where Si 5 sN i 2 ( t P 2/

2 j T )ui is the entropy flow vector, s is the entropy per particle, and N i 5 nui

is the particle flow vector] (Israel and Stewart, 1976; Hiscock and Lind-
blom, 1989).

In order to close the system of equations (3)±(5) we have to give the

equation of state for p and specify T, t , and j . The equations of state for a

homogeneous isotropic viscous fluid have been discussed by some authors.

Hiscock and Salmonson (1991) used the equations of state arising from the

Boltzmann equation to integrate numerically the gravitational field equations
for a flat Friedmann±Robertson±Walker space-time. Lake (1982) considered

a rather simplified equation of state given by the condition of the trace of

the energy-momentum tensor being null. An analysis of the relativistic kinetic

equation for some simple cases given by Murphy (1997), Belinskii and
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Khalatnikov (1975), and Belinskii et al. (1979) shows that in the asymptotic

regions of small and large values of energy density the viscosity coefficients

can be approximated by power functions of the energy density with definite
requirements on the exponents of these functions. For small values of the

energy density it is reasonable to consider large exponents equal in the

extreme case to one. For large r the power of the bulk viscosity coefficient

should be considered smaller than (or equal to) 1/2. So, we shall assume the

following simple phenomenological laws (Belinskii and Khalatnikov, 1975;

Belinskii et al., 1979; Zakari and Jou 1993; Maartens, 1995):

p 5 ( g 2 1) r (7)

j 5 a r s (8)

T 5 b r r (9)

t 5
j
r

5 a r s 2 1 (10)

where 1 # g # 2, a $ 0, b $ 0, r $ 0, and s . 0 are constants. Equations

(7)±(9) are standard in cosmological models, whereas equation (10) is a

simple procedure to ensure that the speed of viscous pulses does not exceed
the speed of light (Maartens, 1995).

The requirement that the entropy is a state function imposes in the

present model the constraint (Chimento and Jakubi, 1997)

r 5
g 2 1

g
(11)

so that 0 # r # 1/2 for 1 # g # 2.

The growth of the total comoving entropy over a proper time interval

(t0, t) is given by (Maartens, 1995)

S (t) 2 S (t0) 5 2
3

k #
t

t0

P Ha3

T
dt (12)

where k is Boltzmann’ s constant.

The Israel±Stewart theory is derived under the assumption that the

thermodynamic state of the fluid is close to equilibrium, that is, the nonequilib-

rium bulk viscous pressure should be small compared to the local equilibrium
pressure (Zimdahl, 1996),

) P ) ¿ p 5 ( g 2 1) r (13)

If this condition is violated, then one is effectively assuming that the

linear theory holds also in the nonlinear regime far from equilibrium. For a
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fluid description of the matter, equation (13) ought to be satisfied (Zim-

dahl, 1996).

To see if a cosmological model inflates or not, it is convenient to
introduce the deceleration parameter q,

q 5
d

dt 1 1

H 2 2 1 5
r 1 3p 1 3 P

2 r
(14)

The positive sign of the deceleration parameter corresponds to standard

decelerating models, whereas the negative sign indicates inflation.

With these assumptions we obtain the following evolution equation for

H (Maartens, 1995):

HÈ 1 3HHÇ 1 31 2 s a 2 1 H2 2 2s HÇ 2 (1 1 r)H 2 1 HÇ 2

1
9

4
( g 2 2) H3 1

1

2
32 2 s a 2 1 g H4 2 2s 5 0 (15)

Equation (15) is transformed into the first order Abel-type differential equation

for the unknown function w( y) using the mathematical transformation dy/d h
5 y(1 1 r)/2/w and s 5 1/2, the general solution of the Abel equation (conse-

quently the field equations) is represented in an exact closed parametric

form and corresponds to a transition between two Minkowskian space-time
connected by an inflationary period (Mak and Harko, 1998a).

In our further investigation of equation (15) with s 5 1/2 and relaxing

the condition of equation (11), new classes of exact solutions of the field

equations are generated from some particular solutions of the Abel equation

leading to two classes of general solutions of the Einstein field equations

corresponding to particular values of the parameters entering in the physical
model. The solutions obtained are represented mathematically in an exact

parametric form and are interpreted physically as describing cosmological

particle production (Mak and Harko, 1998b).

By introducing a set of dimensionless variables h and u by means of

the transformations H 5 (3s a /2)1/(1 2 2s) h, t 5 2/3(3s a /2) 2 1/(1 2 2s) u , s Þ 1/2,

and using equation (11), we find that equation (15) takes the form

d 2h

d u 2 1 (2h 1 h2(1 2 s))
dh

d u
2 (1 1 r)h 2 1 1 dh

d u 2
2

1
2r 2 1

1 2 r
h3 1

1

1 2 r
h2(2 2 s) 5 0 (16)
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Changing the variables according to

h 5 y1/(1 2 r), h 5 # y1/(1 2 r) d u (17)

we find that equation (16) becomes

d 2y

d h 2 1 (2 1 y(1 2 2s)/(1 2 r))
dy

d h
1 (2r 2 1)y 1 y(1 2 2s)/(1 2 r) 1 1 5 0 (18)

By the use of the mathematical substitution u 5 dy/d h , equation (18)

is transformed into the following first-order differential equation for the
unknown function u:

u
du

dy
1 (2 1 y(1 2 2s)/(1 2 r))u 1 (2r 2 1)y 1 y(1 2 2s)/(1 2 r) 1 1 5 0 (19)

3. NEW CLASSES OF SOLUTIONS OF THE FIELD EQUATION

It is a matter of simple calculation to check that equation (19) has two

particular solutions u+ and u 2 of the form

u 6 5 2 [1 6 ! 2(1 2 r)] y 2
1 2 r

2 2 r 2 2s 6
y(1 2 2s 6 )/(1 2 r) 1 1 (20)

corresponding to particular values of s 5 s 6 related to r by means of the

compatibility relation

s 6 5
1

2
6 2 1 1 2 r

2 2
3/2

(21)

The particular solutions of equation (20) together with equation (21)

are the only solutions of this form satisfying the condition of the nonnegativity
of s for all physically acceptable r, s $ 0 for all 0 # r # 1/2, and s+ P [1/

2 1 1/ ! 2, 3/4) for r P [0, 1/2) for the first solution u+ and r P [1 2 2 2 1/

3, 1/2) and s 2 P [0, 1/4) for the second solution u 2 .

By introducing a new parameter s by means of the definition

s 5 y 2 1/(1 2 r) (22)

and a dimensionless variable e by means of the transformation r 5 3(3s a /

2)2/(1 2 2s) e , we can express the two particular solutions of the gravitational
field equations for a Friedmann±Robertson±Walker isotropic space-time

filled with a bulk viscous cosmological fluid in the framework of the full

Israel±Stewart causal theory and corresponding to the particular values of

s 6 given by equation (21) in the following exact closed parametric form:
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u 6 2 u 6 0 5 (1 2 r)(1 7 ! 2(1 2 r)) #
s

s 0

d s

s 6 4[(1 2 r)/2]3/2
1 2r 2 1

(23)

a 6 5 a 6 0 ((2r 2 1) s 7 4[(1 2 r)/2]3/2
1 1) 7 = 2(1 7 = 2(1 2 r))/[3(2r 2 1) = 1 2 r] (24)

e 6 5
1

s 2 (25)

q 6 5
3

2

s 6 4[(1 2 r)/2]3/2
1 2r 2 1

(1 2 r)(1 7 ! 2(1 2 r))
2 1 (26)

S 6 ( u 6 ) 2 S 6 ( u 6 0)

5 S 6 0 #
s

s 0

s 2r 2 3 7 2(1 2 r)(1 7 = 2(1 2 r))/[(2r 2 1) = 1 2 r](1 2 { s 6 4[(1 2 r)/2]
3/2

1 2r 2 1}/[1 7 ! 2(1 2 r)])

( s 6 4[(1 2 r)/2]
3/2

1 2r 2 1)1 6 = 2(1 7 = 2(1 2 r))/ [(2r 2 1) = 1 2 r]
d s

(27)

where a 6 0 and u 6 0 constants of integration and we have denoted

S 6 0 5
2a3

0[1 7 ! 2(1 2 r)] 31 2 r

k b 1 3s a
2 2

2(1 2 r)/(1 2 2s 6 )

4. DISCUSSIONS AND FINAL REMARKS

The bulk viscous universe described by the solution corresponding to

u+ starts its evolution at t 5 t0 from a nonsingular state characterized by

finite values of the energy density, the bulk viscosity coefficient, and the

temperature and the nonzero scale factor. The universe begins to expand
and accelerated inflationary-type expansion occurs. During this period the

deceleration parameter q , 0 for all values of r and of the parameter s .
0. The inflationary behavior is associated with an increase of the energy

density and of the temperature and so the universe experiences a heating

period. This type of inflationary evolution has already been mentioned in the

physical literature (Zimdahl, 1996). During the heating period the comoving
entropy of the universe decreases, so in this model inflation is not associated

with the production of a large amount of entropy. In the limit of large t, t ®
` , s ® ` and we have s 4[(1 2 r)/2]3/2

. . 2r 2 1. So, for large time the scale

factor of the bulk viscous universe described by the first solution becomes

a constant and the universe ends in a Minkowskian era. During the Minkow-
skian period there is a very slow increase in the energy density and the

temperature.

The evolution of the universe described by the second solution u 2 starts

with a quasi-Minkowskian period corresponding to small times and values

of s satisfying the relation (2r 2 1) s 4[(1 2 r)/2]3/2
, , 1. The universe begins
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to expand and the temperature and energy density decrease. The evolution

of the universe is noninflationary (q . 0) for all times t . 0. The deceleration

parameter is q , 0 for times t . tc , where tc is a critical value of the time
(parameter s ), so the universe ends in an inflationary era. The expansion of

the bulk viscous fluid-filled FRW universe described by the second solution

is associated with a rapid decrease of the energy density, the temperature,

and the comoving entropy.

The general condition for inflation aÈ . 0 (q , 0) implies by equation

(14) that r 1 3p 1 3 P , 0. This condition strongly violates equation (13),
showing that for the first solution bulk viscous pressure is greater than the

thermodynamic one, ) P ) . p for all times and consequently viscous fluid

inflation is a far-from-equilibrium process (Maartens and Mendez, 1997).

So, it is a matter for a future analysis and theoretical development to decide

if the inflationary behavior characterizing the present exact solutions of the

gravitational field equations for a FRW universe filled with a bulk viscous
fluid given above can accurately describe a real physical period in the evolu-

tion of our universe. On the other hand, the second solution u 2 leads to a

noninflationary period in the evolution of the universe and satisfies ) P ) , p
for a definite range of values s and r and for a finite period of time, leading

to the possibility of correct physical description of a well-determined period
in the evolution of our universe.

REFERENCES

Belinskii, V. A., and Khalatnikov, I. M. (1975). Soviet Physics-JETP, 42, 205.

Belinskii, V. A., Nikomarov, E. S., and Khalatnikov, I. M. (1979). Soviet Physics-JETP, 50, 213.

Chimento, L. P., and Jakubi, A. S. (1996). Physics Letters A, 212 , 320.

Chimento, L. P., and Jakubi, A. S. (1997). Classical and Quantum Gravity, 14, 1811.

Chimento, L. P., and Jakubi, A. S. (1998). International Journal of Modern Physics D, 7, 177.

Eckart, C. (1940). Physical Review, 58, 919.

Hiscock, W. A., and Lindblom, L. (1989). Annals of Physics, 151 , 466.

Hiscock, W. A., and Salmonson, J. (1991). Physical Review D, 43, 3249.

Israel, W. (1976). Annals of Physics, 100, 310.

Israel, W., and Stewart, J. M. (1976). Physics Letters A, 58, 213.

Lake, K. (1982). Physical Review D, 26, 518.

Landau, L. D., and Lifshitz, E. M. (1987). Fluid Mechanics , Butterworth Heinemann.

Maartens, R. (1995). Classical and Quantum Gravity, 12, 1455.

Maartens, R., and Mendez, V. (1997). Physical Review D, 55, 1937.

Mak, M. K., and Harko, T. (1998a). General Relativity and Gravitation , 30, 1171.

Mak, M. K., and Harko, T. (1998b). Journal of Mathematical Physics, 39, 5458.

Misner, C. W. (1966). Physical Review Letters, 19, 533.

Murphy, G. L. (1973). Physical Review D, 8, 4231.

Zakari, M., and Jou, D. (1993). Physical Review D, 48, 1597.

Zimdahl, W. (1996). Physical Review D, 53, 5483.


